| Reg No.: | Name: |
|----------|-------|
|          |       |

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

**Course Code: EC403** 

Course Name: MICROWAVE & RADAR ENGINEERING

| Max. Marks: 100 |    | Marks: 100 Duration:                                                                                         | 3 Hours |
|-----------------|----|--------------------------------------------------------------------------------------------------------------|---------|
|                 |    | PART A                                                                                                       |         |
|                 |    | Answer any two full questions, each carries 15 marks.                                                        | Marks   |
| 1               | a) | Derive the resonant frequency of a rectangular cavity resonator.                                             | (4)     |
|                 | b) | Determine the resonant frequency of an air filled rectangular cavity operating in                            | (3)     |
|                 |    | the dominant mode with dimensions as a=4cm, b=5cm and d=6cm.                                                 |         |
|                 | c) | Assuming pi mode of oscillations explain how a magnetron can sustain its oscillations using the cross field. | (8)     |
| 2               | a) | With the help of Applegate diagram describe the bunching process in a two                                    | (8)     |
| _               | a) | cavity klystron amplifier and derive the bunching parameter.                                                 | (0)     |
|                 | b) | A reflex klystron operates under the following conditions:                                                   | (7)     |
|                 | 0) | $V_o$ =500V, $R_{sh}$ =10K $\Omega$ , $f_r$ = 8 GHz, L =1 mm, e/m = 1.759 x 10 <sup>11</sup> (MKS system)    | (,,     |
|                 |    | The tube is oscillating at $f_r$ at the peak of the $n=2$ or $1\frac{3}{4}$ mode. Assume that the            |         |
|                 |    | transit time through the gap and beam loading to be neglected. Determine:-                                   |         |
|                 |    | 1. The value of the repeller voltage Vr.                                                                     |         |
|                 |    | 2. The direct current necessary to give a microwave gap voltage of 200 V.                                    |         |
|                 |    | 3. The electronic efficiency under this condition.                                                           |         |
| 3               | a) | Explain the electronic admittance of the gap in the case of reflex klystron. With                            | (7)     |
|                 |    | admittance diagram explain the condition required for oscillation in a reflex                                |         |
|                 |    | Klystron.                                                                                                    |         |
|                 | b) | Given the parameters of a two cavity klystron amplifier:                                                     | (8)     |
|                 |    | Beam Voltage = 1000V,                                                                                        |         |
|                 |    | Beam current = $50$ mA,                                                                                      |         |
|                 |    | Operating frequency = $10GHz$                                                                                |         |
|                 |    | Gap spacing=1mm,                                                                                             |         |
|                 |    | Spacing between two cavities = 5cm,                                                                          |         |
|                 |    | $Ro = 40K\Omega$ , $Rs = 30K\Omega$                                                                          |         |
|                 |    | Determine:                                                                                                   |         |
|                 |    | 1. Input signal to generate maximum output voltage.                                                          |         |

- 2. Voltage gain.
- 3. Efficiency.

## PART B

## Answer any two full questions, each carries 15 marks.

| 4 | a) | With neat diagrams explain any two methods to measure impedance at             | (8)  |
|---|----|--------------------------------------------------------------------------------|------|
|   |    | microwave frequencies.                                                         |      |
|   | b) | Explain with figure a two hole directional coupler and derive its S matrix.    | (7)  |
| 5 | a) | With neat diagram explain the operation of a travelling wave tube.             | (7)  |
|   | b) | Discuss the constructional features of magic tees and derive its S Matrix. Why | (8)  |
|   |    | are they called so?                                                            |      |
| 6 | a) | Derive the expression of axial electric field of Helix TWT.                    | (8)  |
|   | b) | With a schematic describe the operation of a four port circulator. Obtain the  | (7)  |
|   |    | simplified S matrix of a perfectly matched, lossless four port circulator.     |      |
|   |    | PART C                                                                         |      |
|   |    | Answer any two full questions, each carries 20 marks.                          |      |
| 7 | a) | What is tunnelling? Explain the operation of a tunnel diode with aid of energy | (10) |
|   |    | band diagram.                                                                  |      |
|   | b) | Derive Radar range equation.                                                   | (5)  |
|   | c) | A simple MTI delay line canceller is an example of time domain filter. Explain | (5)  |
|   |    | Why?                                                                           |      |
| 8 | a) | Discuss the various limitations of microwave transistors.                      | (10) |
|   | b) | Explain the more commonly used radar displays.                                 | (5)  |
|   | c) | Explain how the noise figure of a radar receiver is monitored.                 | (5)  |
| 9 | a) | Explain with neat diagram, the working of CW radar with non zero IF.           | (10) |
|   | b) | Explain with the help of figures different modes of operation of Gunn diodes.  | (10) |
|   |    |                                                                                |      |

\*\*\*\*